Глава 2. Label Distribution Protocols (RSVP, LDP): различия между версиями

Материал из Juniper Exam Wiki
Перейти к навигации Перейти к поиску
(Новая страница: «===RSVP=== '''RSVP''' - ''resource reservation protocol'' - требует больше конфигурации для работы, чем LPD, но зато и…»)
 
Строка 30: Строка 30:
===LDP===
===LDP===
'''LDP''' - ''label distribution protocol'' - намного более простой в настройке, но малофункциональный сигнальный протокол, по сравнению с RSVP.
'''LDP''' - ''label distribution protocol'' - намного более простой в настройке, но малофункциональный сигнальный протокол, по сравнению с RSVP.
====Соседство====
При включении LDP на роутере, он пытается установить соседство. Mulicast на '''UDP 646''' шлют hello пакеты (раз в 5 сек, dead interval = 15 сек). Другой роутер слушает hello на этом же порту, отвечает hello, т.о. устанавливается соседство.
После этого устанавливается TCP сессия. По этой сессии начинается обмен метками и пакетами по unicast.
Инициатором построения туннелей выступает egress роутер.
Роутер (A) анонсирует свой Lo соседнему роутеру (В). Этот анонс попадает в inet.3. Т.к. B - прямой сосед А, и между ними однохоповый туннель, то анонс от А придет с меткой 3.
Роутер B начинает анонсировать Lo роутера А остальным своим соседям (C,D), чтобы те начали строить туннели до роутера А. На роутерах C,D анонс от B поместится в inet.3, с ''push'' метка. А на роутере B в таблице mpls.0 - появляется запись для туннеля с ''swap''.
В итоге - full mesh на сети. На всех роутерах в inet.3 будет Lo роутера А.
{{note|text=Установление LDP LSP нельзя контролировать, они следуют кратчайшему пути по IGP.}}
'''Для исключения петель: '''
* На каждом роутере для каждого соседа создается 2 LDP database: на вход и на выход. LDP database, поступившая на вход, сравнивается с топологией IGP. В inet.3 попадает тот анонс, который пришел с того же next-hop, что указан для пришедшего Lo.
* То, что пришло и не совпало с IGP - сохраняется, но не используется. ''Liberal protection''.
'''Без настроенного link-state IGP (OSPF или ISIS) LDP работать не будет!''' Скорость перестроения - зависит от перестроения по IGP.
====Cisco====
В Cisco дефолтное поведение немного другое. Анонсируются не только Lo, а полностью таблица маршрутизации и сразу вставляется в GRT (global routing table).
Чтобы на Juniper получить такое же поведение:
# Пишем egress-policy: где указано что требуется анонсировать из таблицы маршрутизации по протоколу LDP. Policy применяется как egress policy к протоколу LDP.
# На всех остальных роутерах требуется перенести inet.3 в inet.0.
Это может понадобиться только в случае, если мы делаем редистрибьюцию внешних префиксов во внутренний протокол. '''- чего провайдер делать не должен.'''


====Configuration====
====Configuration====
Строка 45: Строка 77:
3. На остальных роутерах в mpls домене делаем все тоже самое.
3. На остальных роутерах в mpls домене делаем все тоже самое.


После этого каждый роутер может обмениваться LDP со своими соседями. Каждый соседний роутер, получивший метку от нового роутера, передает информацию о LDP доступности до нового роутера через конкретную метку своим остальным соседям, и т.д. В результате на роутере есть LDP LSP до каждого Lo адреса каждого роутера в LDP домене. Установление LDP LSP нельзя контролировать, они следуют кратчайшему пути по IGP.
Можно проверить что будет происходить с меткой на каждом хопе LDP LSP:
show route protocol ldp 10.200.86.7
show ldp router
show route table inet.3  - если нет Lo нужного нам роутера, то проверяем есть ли Lo в inet.0 (IGP)


Можно проверить что будет происходить с меткой на каждом хопе LDP LSP:
'''Обычно не стоит вопрос о том какой протокол использовать. Оба протокола друг друга просто дополняют.''' У двух протоколов разные preference, поэтому BGP будет выбирать RSVP, как более приоритетный.


show route protocol ldp 10.200.86.7
Второй preference у RSVP: Когда внутри протокола требуется сравнение маршрутов. RSVP auto mesh - preference 2 = 3. Если на сети будет построен туннель статический, и auto-mesh, то предпочтительней будет статический. (preference 2: 1 < 3).

Версия 13:30, 2 ноября 2016

RSVP

RSVP - resource reservation protocol - требует больше конфигурации для работы, чем LPD, но зато имеет более полезных фич, таких как: TE, fast-failover, QoS, bandwidth reservation, LSP customization.

Configuration

1. Включаем family mpls на интерфейсах, смотрящих в ядро. Эта настройка позволяет отправлять и получать пакеты с метками.

[edit interfaces]
   set ge-0/0/2.0 family mpls
   set ge-0/0/3.0 family mpls

2. Настраиваем LSP. И добавляем нужные интерфейсы в protocols mpls. Это позволяет запустить на указанных интерфейсах mpls и появиться в TED, как возможный ресурс для использования.

[edit protocols mpls]
	set label-switched-path R1-to-R5 {
		to 10.200.86.3;
	}
	interface ge-0/0/2.0;
	interface ge-0/0/3.0;

3. Добавляем в протокол RSVP нужные интерфейсы.

[edit protocols rsvp]
	set interface ge-0/0/2.0
	set interface ge-0/0/3.0

4. На остальных роутерах требуется включить family mpls и добавить интерфейсы в protocols rsvp.

В LDP нет требования добавлять интерфейсы в protocols mpls, но family mpls включать нужно.

LSP установлена и имеет свой record route: список IP адресов интерфейсов, через которых проходит RSVP LSP, включая ingress и egress.

LDP

LDP - label distribution protocol - намного более простой в настройке, но малофункциональный сигнальный протокол, по сравнению с RSVP.

Соседство

При включении LDP на роутере, он пытается установить соседство. Mulicast на UDP 646 шлют hello пакеты (раз в 5 сек, dead interval = 15 сек). Другой роутер слушает hello на этом же порту, отвечает hello, т.о. устанавливается соседство.

После этого устанавливается TCP сессия. По этой сессии начинается обмен метками и пакетами по unicast.

Инициатором построения туннелей выступает egress роутер.

Роутер (A) анонсирует свой Lo соседнему роутеру (В). Этот анонс попадает в inet.3. Т.к. B - прямой сосед А, и между ними однохоповый туннель, то анонс от А придет с меткой 3.

Роутер B начинает анонсировать Lo роутера А остальным своим соседям (C,D), чтобы те начали строить туннели до роутера А. На роутерах C,D анонс от B поместится в inet.3, с push метка. А на роутере B в таблице mpls.0 - появляется запись для туннеля с swap.

В итоге - full mesh на сети. На всех роутерах в inet.3 будет Lo роутера А.

Установление LDP LSP нельзя контролировать, они следуют кратчайшему пути по IGP.

Для исключения петель:

  • На каждом роутере для каждого соседа создается 2 LDP database: на вход и на выход. LDP database, поступившая на вход, сравнивается с топологией IGP. В inet.3 попадает тот анонс, который пришел с того же next-hop, что указан для пришедшего Lo.
  • То, что пришло и не совпало с IGP - сохраняется, но не используется. Liberal protection.

Без настроенного link-state IGP (OSPF или ISIS) LDP работать не будет! Скорость перестроения - зависит от перестроения по IGP.

Cisco

В Cisco дефолтное поведение немного другое. Анонсируются не только Lo, а полностью таблица маршрутизации и сразу вставляется в GRT (global routing table).

Чтобы на Juniper получить такое же поведение:

  1. Пишем egress-policy: где указано что требуется анонсировать из таблицы маршрутизации по протоколу LDP. Policy применяется как egress policy к протоколу LDP.
  2. На всех остальных роутерах требуется перенести inet.3 в inet.0.

Это может понадобиться только в случае, если мы делаем редистрибьюцию внешних префиксов во внутренний протокол. - чего провайдер делать не должен.

Configuration

1. Включаем family mpls:

[edit interfaces]
set ge-0/0/2.0 family mpls
set ge-0/0/3.0 family mpls

2. Добавляем интерфейсы в protocols ldp

[edit protocols ldp]
	set interface ge-0/0/2.0
	set interface ge-0/0/3.0

3. На остальных роутерах в mpls домене делаем все тоже самое.

Можно проверить что будет происходить с меткой на каждом хопе LDP LSP:

show route protocol ldp 10.200.86.7
show ldp router
show route table inet.3  - если нет Lo нужного нам роутера, то проверяем есть ли Lo в inet.0 (IGP)

Обычно не стоит вопрос о том какой протокол использовать. Оба протокола друг друга просто дополняют. У двух протоколов разные preference, поэтому BGP будет выбирать RSVP, как более приоритетный.

Второй preference у RSVP: Когда внутри протокола требуется сравнение маршрутов. RSVP auto mesh - preference 2 = 3. Если на сети будет построен туннель статический, и auto-mesh, то предпочтительней будет статический. (preference 2: 1 < 3).