Реализация MPLS в ядре сети: различия между версиями

Материал из Juniper Exam Wiki
Перейти к навигации Перейти к поиску
Строка 294: Строка 294:
     Interface ge-0/0/0.120
     Interface ge-0/0/0.120
     Aggregate
     Aggregate
=BGP Considerations=
==RR==

Версия 21:45, 15 ноября 2016

Core MPLS Designs

RSVP auto-mesh

Когда на сети используется RSVP, но для конкретных функций (L3VPN, VPLS, ...) требуется full-mesh, то чтобы не прописывать все LSP руками, можно использовать RSVP-full-mesh.

Строится, когда:

  • От PE пришел iBGP маршрут (inet.0, VPLS, L3VPN)
  • IP PE из определенного диапазона.
[edit routing-options]
dynamic-tunnels {
   tunnel-1 {
       rsvp-te tunnel-1 {
           label-switched-path-template {
               default-template;
           }
           destination-networks {
               10.200.86.0/26;

В книге описано, что просто туннель не поднимется (лаба на mx80), т.к. требуется маршрут до Lo PE с меткой в inet.0. Решение: Нужно временно включить LDP и set protocols mpls traffic-engineering bgp-igp-both-ribs, ждем пока построятся RSVP LSP, потом отключаем LDP.

Но по факту в лабе завелось и без дополнительных манипуляций с LDP (лаба на vSRX). =)

В итоге, когда приходят пакеты по iBGP, то до protocol next-hop (Lo PE, который должен попадать в dest-networks) автоматически поднимается туннель.

bgp.l3vpn.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.200.86.3:1212:12.12.12.12/32
                  *[BGP/170] 12:34:36, localpref 100, from 10.200.86.3
                     AS path: I
                   > to 192.168.86.1 via ge-0/0/0.30, label-switched-path 10.200.86.3:dt-rsvp-tunnel-1
bgp.l2vpn.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.200.86.9:1515:1:1/96
                  *[BGP/170] 12:16:54, localpref 100, from 10.200.86.9
                     AS path: I
                   > to 192.168.86.1 via ge-0/0/0.30, label-switched-path 10.200.86.9:dt-rsvp-tunnel-1
inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.200.86.0/26     *[Tunnel/300] 12:10:07
                     Tunnel
10.200.86.3/32     *[RSVP/7/3] 00:03:04, metric 4
                   > to 192.168.86.1 via ge-0/0/0.30, label-switched-path 10.200.86.3:dt-rsvp-tunnel-1
10.200.86.9/32     *[RSVP/7/3] 00:03:04, metric 5
                   > to 192.168.86.1 via ge-0/0/0.30, label-switched-path 10.200.86.9:dt-rsvp-tunnel-1


lagavulin> show mpls lsp name 10.200.86.3:dt-rsvp-tunnel-1 detail
Ingress LSP: 2 sessions
10.200.86.3
 From: 10.200.86.7, State: Up, ActiveRoute: 0, LSPname: 10.200.86.3:dt-rsvp-tunnel-1
 ActivePath:  (primary)
 PathDomain: Inter-domain
 LSPtype: Dynamic Configured
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
*Primary                    State: Up
   Priorities: 7 0
   SmartOptimizeTimer: 180
   Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 4)
192.168.86.1 S 192.168.86.41 S 192.168.86.50 S 192.168.86.25 S
   Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt 20=Node-ID):
         192.168.86.1 192.168.86.41 192.168.86.50 192.168.86.25
  • Можно добавлять разные фичи TE:
[edit protocols mpls]
label-switched-path default-template {
   template;
   link-protection;
  • Если до одного и того же Lo PE есть динамический и статический LSP, то будет выбран статический, т.к. у него preference 2 меньше:
inet.3: 3 destinations, 4 routes (3 active, 0 holddown, 0 hidden)
10.200.86.3/32     *[RSVP/7/1] 00:00:26, metric 4
                   > to 192.168.86.1 via ge-0/0/0.30, label-switched-path lagavulin-to-oban
                   [RSVP/7/3] 00:02:32, metric 4
                   > to 192.168.86.1 via ge-0/0/0.30, label-switched-path 10.200.86.3:dt-rsvp-tunnel-1
  • Если по iBGP перестают прилетать маршруты, то туннель через 15 минут умрет:
lagavulin> show dynamic-tunnels database
Table: inet.3
Destination-network: 10.200.86.0/26
Tunnel to: 10.200.86.9/32 (expires in 00:14:46 seconds)
 Reference count: 0
 Next-hop type: rsvp-te
   10.200.86.9:dt-rsvp-tunnel-1

LDP tunneling

Комбинация LDP и RSVP. Core - RSVP + TE, доступ - LDP.

Процесс построения

Ldp tunneling.png

  • Роутер A (PE) - LDP. Egress: начинает анонсировать себя с меткой 3 в сторону B.
  • Роутер B (PE) - LDP + RSVP. Анонс LoA с меткой 20 в сторону C. B: mpls.0: 20 pop -> A
  • Роутер C (P) - RSVP (с LDP-tunneling). Анонс LoA с меткой 30 в сторону E. С: mpls.0: 30 swap 20 -> B.
  • Роутер D (P) - между E<>C - RSVP LSP, где D - предпоследний роутер.
  • Роутер E (P) - LDP + RSVP. Анонс LoA с меткой 40 в сторону F. E: mpls.0: 40 swap 30 -> C. Но C не direct connected, а доступен через туннель => идем смотреть в inet.3. E: inet.3: LoC push 100 -> D. => E: mpls.0: 40 swap 30 push 100
  • Роутер F (PE) - LDP. Ingress: inet.3: LoA: push 40 -> E.

В обратную сторону строится точно также.

Когда туннель построен, между ingress (C) и egress (E) роутерами RSVP LSP установится LDP соседство! Устанавливается по UDP 646 на Lo P (берется из конфигурации туннеля), не hello механизм, но тоже работает’’.

Обязательно на P роутерах включить в LDP Lo, чтобы поднялся туннель C - E.

Схема работает только в пределах области.

При включенном LDP tunneling будут видны скрытые маршруты в inet.3

Можно использовать, когда не все устройства в сети поддерживают RSVP, но на ядре требуется TE. Также TE как таковой не требуется вообще на PE, нужно только на ядре, на P роутерах. Поэтому RSVP можно запустить только на ядре, а PE будут подцепляться по LDP.

При конфигурации может возникнуть проблема с переносом маршрутов из inet.3 в inet.0 (на PE роутерах). Решается как обычно: set protocols mpls traffic-engineering bgp-ibgp-both-ribs. Или любым другим способом.

Configuration

Ldp tunneling laba.png

PE (LDP + RSVP):

[protocols mpls]
   traffic-engineering bgp-igp-both-ribs;
   label-switched-path talisker-to-oban {
      to 10.200.86.3;
      ldp-tunneling;
[protocols ldp]
   interface ge-0/0/0.70;
   interface ge-0/0/0.120;
   interface all;

С другой стороны на PE:

[protocols mpls]
   traffic-engineering bgp-igp-both-ribs;
   label-switched-path oban-to-talisker {
      to 10.200.86.4;
      ldp-tunneling;

Проверка

Между крайние PE, на которых настроено туннелирование, установили соседство между собой по LDP:

talisker> show ldp neighbor
Address            Interface          Label space ID         Hold time
10.200.86.3        lo0.0              10.200.86.3:0            42

На PE, к которому подключается CE:

macduff> show route 10.200.86.1
inet.0: 30 destinations, 40 routes (30 active, 0 holddown, 0 hidden)
10.200.86.1/32     *[LDP/9] 00:19:03, metric 1
                   > to 192.168.86.13 via ge-0/0/0.70, Push 300016
                   [OSPF/10] 00:19:03, metric 4
                   > to 192.168.86.13 via ge-0/0/0.70
talisker> show route label 300016 detail
mpls.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
300016 (1 entry, 1 announced)
       *LDP    Preference: 9
               Next hop type: Router, Next hop index: 548
               Address: 0x934c3b8
               Next-hop reference count: 2
               Next hop: 192.168.86.33 via ge-0/0/0.120 weight 0x1, selected
               Label-switched-path talisker-to-oban
               Label operation: Swap 299776, Push 299968(top)
               Label TTL action: prop-ttl, prop-ttl(top)
               State: <Active Int NhAckRequest>
               Local AS:  1111
               Age: 19:37      Metric: 1
               Task: LDP
               Announcement bits (1): 0-KRT
               AS path: I
               Prefixes bound to route: 10.200.86.1/32
tormore> show route label 299968 detail
mpls.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
299968(S=0) (1 entry, 1 announced)
       *RSVP   Preference: 7/1
               Next hop type: Router, Next hop index: 581
               Address: 0x934d258
               Next-hop reference count: 2
               Next hop: 192.168.86.38 via ge-0/0/0.130 weight 0x1, selected
               Label-switched-path talisker-to-oban
               Label operation: Pop
               State: <Active Int AckRequest>
               Local AS:  1111
               Age: 1:09:29    Metric: 1
               Task: RSVP
               Announcement bits (1): 0-KRT
               AS path: I
oban> show route label 299776 detail
mpls.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
299776 (1 entry, 1 announced)
       *LDP    Preference: 9
               Next hop type: Router, Next hop index: 544
               Address: 0x934c568
               Next-hop reference count: 2
               Next hop: 192.168.86.26 via ge-0/0/0.110, selected
               Label operation: Pop
               State: <Active Int>
               Local AS:  1111
               Age: 26:53      Metric: 1
               Task: LDP
               Announcement bits (1): 0-KRT
               AS path: I
               Prefixes bound to route: 10.200.86.1/32

MPLS Scaling

Hierarchical LSP

Иерархичные LSP позволяют роутеры воспринимать core-to-core линки, как физические интерфейсы. То есть протокол IGP может анонсировать метрики и TE характеристики LSP, как обычного интерфейса.

Для внедрения иерархичных LSP требуется OSPF.

Configuration

  • LSP задаём, как te-link - это даёт возможность другим роутером увидеть данный линк внутри TED
  • Конфигурируем логический интерфейс.
  • Link-management

Вся конфигурация задается только на P роутерах.

lagavulin> show configuration protocols 
rsvp {
   interface ge-0/0/1.0;
   interface ge-0/0/2.0;
   peer-interface peer-talisker;
}
mpls {
   label-switched-path lagavulin-to-talisker {
   to 10.200.86.4;
 }
   interface ge-0/0/1.0;
   interface ge-0/0/2.0;
 }
ospf { 
   traffic-engineering;
   area 0.0.0.0 {
   interface lo0.0 {
      passive;
   interface ge-0/0/1.0
   interface ge-0/0/2.0;
   peer-interface peer-talisker;
link-management {
   te-link lagavulin-to-talisker-te {
      local-address 192.168.87.1;
      remote-address 192.168.87.2;
      te-metric 1;
      label-switched-path lagavulin-to-talisker;
   peer peer-talisker {
      address 10.200.86.4;
      te-link lagavulin-to-talisker-te;
  • Для самого туннеля задаются отдельные ip: конечный и начальный (как у любого туннеля).
  • Te-metric - та самая метрика, которая будет сравниваться при построении кратчайшего пути
lagavulin> show link-management 
Peer name: peer-talisker, System identifier: 55629
   State: Up, Control address: 10.200.86.4
   Hello interval: 150, Hello dead interval: 500
      TE links:
          lagavulin-to-talisker-te
 TE link name: lagavulin-to-talisker-te, State: Up
    Local identifier: 2684274792, Remote identifier: 2684274792,
    Local address: 192.168.87.1, Remote address: 192.168.87.2, Encoding: Packet,
    Switching: Packet, Minimum bandwidth: 0bps, Maximum bandwidth: 0bps,
    Total bandwidth: 0bps, Available bandwidth: 0bps
        Name                         State Local ID Remote ID Bandwidth Used LSP-name
        lagavulin-to-talisker Up     14956    0            0bps               Yes dalwhinnie-to-tormore

В итоге видим, что dalwhinnie-to-tormore туннелируется в lagavulin-to-talisker.

dalwhinnie> show mpls lsp name dalwhinnie-to-tormore detail 
   Ingress LSP: 1 sessions
   10.200.86.9
   From: 10.200.86.5, State: Up, ActiveRoute: 0, LSPname: dalwhinnie-to-tormore
   ActivePath: (primary)
   LoadBalance: Random
   Encoding type: Packet, Switching type: Packet, GPID: IPv4
     *Primary State: Up
     SmartOptimizeTimer: 180
     Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 60)
     192.168.86.29 S 192.168.87.2 S 192.168.86.33 S 
     Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
     192.168.86.29 192.168.87.2 192.168.86.33
     Total 1 displayed, Up 1, Down 0

На роутере, где будет настроен и начинаться hierarchical LSP будет делаться дополнительный push метки, для прохождения пакета внутри hierarchical LSP.

Причём на P роутере, транзитном для hierarchal LSP, не будет никакой информации о LSP, вложенном в hierarchical LSP. В этом, наверное и заключается основное преимущество метода - масштабируемость.

Hierarchical RSVP Domains

Смысл: разбить путь прохождения пакета на части: PE-P, P-P, P-PE LSP.

PE имеют RSVP-TE LSP до ближайших P роутеров. Между Р роутерами - full-mesh.

При таком подходе нельзя использовать MPLS VPN сервисы, т.к. Пропадает целостность РЕ-РЕ LSP.

Но такой подход даёт возможность использовать совмещённый LDP+RSVP.

Использовать функции ТЕ в сore и различные механизмы защиты (link-protection, link-node-protection).

RSVP Refresh reduction

Для решения проблем с масштабируемостью в самом протоколе RSVP, были сделаны несколько дополнений:

  • reliable messages: внедрены 2 новых объекта MESSAGE_ID, MESSAGE_ID_ACK.
  • boundle messages: группировка/объединение уже существующих сообщений RSVP.
  • summary refresh update: объединяет несколько path или resv сообщений в один update.
 [edit protocols rsvp]
   Interface ge-0/0/0.120
   Aggregate

BGP Considerations

RR